6.2. Regression

Regression tasks predict continuous values. The following metrics evaluate the accuracy of predicted values against true values:

Metric Purpose Use Case
Mean Absolute Error (MAE)
\( \displaystyle \frac{1}{N} \sum_{i=1}^N \vert y_i - \hat{y}_i \vert \)
Measures average absolute difference between predictions and true values Robust to outliers, interpretable as average error
Mean Squared Error (MSE)
\( \displaystyle \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2 \)
Measures average squared difference between predictions and true values Sensitive to outliers, commonly used in neural network loss functions
Root Mean Squared Error (RMSE)
\( \displaystyle \sqrt{\frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2} \)
Square root of MSE, providing error in same units as target Preferred for interpretable error magnitude, widely used in forecasting
Mean Absolute Percentage Error (MAPE)
\( \displaystyle \frac{1}{N} \sum_{i=1}^N \left \vert \frac{y_i - \hat{y}_i}{y_i} \right \vert \cdot 100 \)
Measures average percentage error relative to true values Useful when relative errors matter (e.g., financial predictions), but sensitive to zero or near-zero true values
\(R^2\) (Coefficient of Determination)
\( \displaystyle 1 - \frac{\sum_{i=1}^N (y_i - \hat{y}_i)^2}{\sum_{i=1}^N (y_i - \bar{y})^2} \)
Measures proportion of variance in dependent variable explained by model Indicates model fit, with values closer to 1 indicating better fit
Adjusted \(R^2\)
\( \displaystyle 1 - \left( \frac{(1 - R^2)(N - 1)}{N - k - 1} \right) \)
Adjusts R² for number of predictors, penalizing overly complex models Useful when comparing models with different numbers of features
Median Absolute Error (\(\text{MedAE}\))
\( \displaystyle \text{median}(\vert y_1 - \hat{y}_1 \vert, \dots, \vert y_N - \hat{y}_N \vert) \)
Measures median of absolute differences, highly robust to outliers Preferred in datasets with extreme values or non-Gaussian errors